# **AP Calculus BC**

# **Unit 8 – Parametric and Polar Equations**

| a) $x = 2t + 3$ and $y = 4t - 3$ for t in the interval $[0,3]$<br>b) $x = \sin t$ and $y = 2\cos t$ for t in the interval $[0,\pi]$<br>2 Find (a) $\frac{dy}{dx}$ and (b) $\frac{d^2y}{dx^2}$ in terms of t.<br>a) $x = 4\sin t$ , $y = 2\cos t$<br>b) $x = t^2 - 3t$ , $y = t^3$<br>c) $x = \ln(2t)$ , $y = \ln(3t)^4$<br>d) $x = \ln(5t)$ , $y = e^{5t}$<br>3 If $x = t^2 - 1$ and $y = e^{t^3}$ , find $\frac{dy}{dx}$ .<br>4 A curve C is defined by the parametric equations $x = t^3$ and $y = t^2 - 5t + 2$ . Write an equation of the line the tangent to the graph of C at the point (8,-4).<br>5 Consider the curve C given by the parametric equations $x = 2 - 3\cos t$ and $y = 3 + 2\sin t$ , for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ .<br>(a) Find $\frac{dy}{dx}$ as a function of t.<br>(b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .                                                                                                                                                                                                                                                                                                                                                                 | 1 | Skatch the peremetric survey. Find on equation that relates x and y directly.                                                                                      |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| b) $x = \sin t$ and $y = 2\cos t$ for $t$ in the interval $\begin{bmatrix} 0, \pi \end{bmatrix}$<br>2<br>Find (a) $\frac{dy}{dx}$ and (b) $\frac{d^2y}{dx^2}$ in terms of $t$ .<br>a) $x = 4\sin t$ , $y = 2\cos t$<br>b) $x = t^2 - 3t$ , $y = t^3$<br>c) $x = \ln(2t)$ , $y = \ln(3t)^4$<br>d) $x = \ln(5t)$ , $y = e^{5t}$<br>3<br>If $x = t^2 - 1$ and $y = e^{t^2}$ , find $\frac{dy}{dx}$ .<br>4<br>A curve $C$ is defined by the parametric equations $x = t^3$ and $y = t^2 - 5t + 2$ . Write an equation of the line the tangent to the graph of $C$ at the point (8,-4).<br>5<br>Consider the curve $C$ given by the parametric equations $x = 2 - 3\cos t$ and $y = 3 + 2\sin t$ , for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ .<br>(a) Find $\frac{dy}{dx}$ as a function of $t$ .<br>(b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .<br>(c) (Calculator) The curve $C$ intersects the y-axis twice. Approximate the length of the curve between $ty$ -intercepts.<br>6<br>A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describ curve?<br>(A) Increasing & concave up<br>(B) increasing & concave down<br>(C) decreasing and concave | 1 | Sketch the parametric curves. Find an equation that relates x and y directly.<br>a) $x = 2t + 3$ and $y = 4t + 3$ for t in the interval [0, 3]                     |  |  |  |
| 2       Find (a) $\frac{dy}{dx}$ and (b) $\frac{d^2y}{dx^2}$ in terms of t.         a) $x = 4 \sin t$ , $y = 2 \cos t$ b) $x = t^2 - 3t$ , $y = t^3$ c) $x = \ln(2t)$ , $y = \ln(3t)^4$ d) $x = \ln(5t)$ , $y = e^{5t}$ 3         If $x = t^2 - 1$ and $y = e^{t^3}$ , find $\frac{dy}{dx}$ .         4         A curve C is defined by the parametric equations $x = t^3$ and $y = t^2 - 5t + 2$ . Write an equation of the line th tangent to the graph of C at the point (8,-4).         5         Consider the curve C given by the parametric equations $x = 2 - 3\cos t$ and $y = 3 + 2\sin t$ , for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ .         (a) Find $\frac{dy}{dx}$ as a function of t.         (b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .         (c) (Calculator) The curve C intersects the y-axis twice. Approximate the length of the curve between $t$ y-intercepts.         6         A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describ curve?         (A) Increasing & concave up       (B) increasing & concave down       (C) decreasing and concave down                                                    |   |                                                                                                                                                                    |  |  |  |
| Find (a) $\frac{dy}{dx}$ and (b) $\frac{dy}{dx^2}$ in terms of t.<br>a) $x = 4\sin t$ , $y = 2\cos t$<br>b) $x = t^2 - 3t$ , $y = t^3$<br>c) $x = \ln(2t)$ , $y = \ln(3t)^4$<br>d) $x = \ln(5t)$ , $y = e^{5t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | b) $x = \sin t$ and $y = 2\cos t$ for t in the interval $[0, \pi]$                                                                                                 |  |  |  |
| Find (a) $\frac{dy}{dx}$ and (b) $\frac{dy}{dx^2}$ in terms of t.<br>a) $x = 4\sin t$ , $y = 2\cos t$<br>b) $x = t^2 - 3t$ , $y = t^3$<br>c) $x = \ln(2t)$ , $y = \ln(3t)^4$<br>d) $x = \ln(5t)$ , $y = e^{5t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                                                                                                                                                    |  |  |  |
| a) $x = 4 \sin t, y = 2 \cos t$<br>b) $x = t^2 - 3t, y = t^3$<br>c) $x = \ln(2t), y = \ln(3t)^4$<br>d) $x = \ln(5t), y = e^{5t}$ 3344A curve C is defined by the parametric equations $x = t^3$ and $y = t^2 - 5t + 2$ . Write an equation of the line th<br>tangent to the graph of C at the point $(8, -4)$ .55Consider the curve C given by the parametric equations $x = 2 - 3\cos t$ and $y = 3 + 2\sin t$ , for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ .<br>(a) Find $\frac{dy}{dx}$ as a function of t.<br>(b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .<br>(c) (Calculator) The curve C intersects the y-axis twice. Approximate the length of the curve between the y-intercepts.66A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describ<br>curve?<br>(A) Increasing & concave up6                                                                                                                                                                                                                                                                                                                                                    | 2 | Find (a) $\frac{dy}{dt}$ and (b) $\frac{d^2y}{dt}$ in terms of t                                                                                                   |  |  |  |
| b) $x = t^2 - 3t$ , $y = t^3$<br>c) $x = \ln(2t)$ , $y = \ln(3t)^4$<br>d) $x = \ln(5t)$ , $y = e^{5t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                                                                                                                                                    |  |  |  |
| c) $x = \ln(2t), y = \ln(3t)^4$ d) $x = \ln(5t), y = e^{5t}$ 3         If $x = t^2 - 1$ and $y = e^{t^2}$ , find $\frac{dy}{dx}$ .         4       A curve C is defined by the parametric equations $x = t^3$ and $y = t^2 - 5t + 2$ . Write an equation of the line th tangent to the graph of C at the point $(8, -4)$ .         5       Consider the curve C given by the parametric equations $x = 2 - 3\cos t$ and $y = 3 + 2\sin t$ , for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ .         (a) Find $\frac{dy}{dx}$ as a function of t.         (b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .         (c) (Calculator) The curve C intersects the y-axis twice. Approximate the length of the curve between the y-intercepts.         6       A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describe curve?         (A) Increasing & concave up       (B) increasing & concave down       (C) decreasing and concave down                                                                                                                                                                                                                |   |                                                                                                                                                                    |  |  |  |
| d) $x = \ln(5t), y = e^{5t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | b) $x = t^2 - 3t$ , $y = t^3$                                                                                                                                      |  |  |  |
| d) $x = \ln(5t), y = e^{5t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                                                                                                                                                                    |  |  |  |
| 3       If $x = t^2 - 1$ and $y = e^{t^3}$ , find $\frac{dy}{dx}$ .         4       A curve <i>C</i> is defined by the parametric equations $x = t^3$ and $y = t^2 - 5t + 2$ . Write an equation of the line th tangent to the graph of <i>C</i> at the point (8, -4).         5       Consider the curve <i>C</i> given by the parametric equations $x = 2 - 3\cos t$ and $y = 3 + 2\sin t$ , for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ .         (a) Find $\frac{dy}{dx}$ as a function of <i>t</i> .         (b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .         (c) (Calculator) The curve <i>C</i> intersects the <i>y</i> -axis twice. Approximate the length of the curve between the y-intercepts.         6         A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describe curve?         (A) Increasing & concave up       (B) increasing & concave down       (C) decreasing and concave down                                                                                                                                                                                                                                    |   |                                                                                                                                                                    |  |  |  |
| If $x = t^2 - 1$ and $y = e^{t^3}$ , find $\frac{dy}{dx}$ .4A curve C is defined by the parametric equations $x = t^3$ and $y = t^2 - 5t + 2$ . Write an equation of the line th<br>tangent to the graph of C at the point $(8, -4)$ .5Consider the curve C given by the parametric equations $x = 2 - 3\cos t$ and $y = 3 + 2\sin t$ , for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ .<br>(a) Find $\frac{dy}{dx}$ as a function of t.<br>(b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .<br>(c) (Calculator) The curve C intersects the y-axis twice. Approximate the length of the curve between the y-intercepts.6A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describing the curve?<br>(A) Increasing & concave up (B) increasing & concave down (C) decreasing and concave                                                                                                                                                                                                                                                                                                                                                                   |   | $u_{j} = x - m(x_{j}),  y = c$                                                                                                                                     |  |  |  |
| 4A curve C is defined by the parametric equations $x = t^3$ and $y = t^2 - 5t + 2$ . Write an equation of the line th<br>tangent to the graph of C at the point $(8, -4)$ .5Consider the curve C given by the parametric equations $x = 2 - 3\cos t$ and $y = 3 + 2\sin t$ , for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ .<br>(a) Find $\frac{dy}{dx}$ as a function of t.<br>(b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .<br>(c) (Calculator) The curve C intersects the y-axis twice. Approximate the length of the curve between<br>y-intercepts.6A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describ<br>curve?<br>(A) Increasing & concave up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 |                                                                                                                                                                    |  |  |  |
| 4A curve C is defined by the parametric equations $x = t^3$ and $y = t^2 - 5t + 2$ . Write an equation of the line th<br>tangent to the graph of C at the point $(8, -4)$ .5Consider the curve C given by the parametric equations $x = 2 - 3\cos t$ and $y = 3 + 2\sin t$ , for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ .<br>(a) Find $\frac{dy}{dx}$ as a function of t.<br>(b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .<br>(c) (Calculator) The curve C intersects the y-axis twice. Approximate the length of the curve between<br>y-intercepts.6A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describ<br>curve?<br>(A) Increasing & concave up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | If $y = t^2 - 1$ and $y = a^{t^3}$ find $\frac{dy}{dt}$                                                                                                            |  |  |  |
| 5Consider the curve C given by the parametric equations $x = 2 - 3\cos t$ and $y = 3 + 2\sin t$ , for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ .(a) Find $\frac{dy}{dx}$ as a function of t.(b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .(c) (Calculator) The curve C intersects the y-axis twice. Approximate the length of the curve between the y-intercepts.6A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describing the curve?(A) Increasing & concave up(B) increasing & concave down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | If $x = i - 1$ and $y = e^{-1}$ , find $\frac{dx}{dx}$ .                                                                                                           |  |  |  |
| tangent to the graph of C at the point $(8, -4)$ .5Consider the curve C given by the parametric equations $x = 2 - 3\cos t$ and $y = 3 + 2\sin t$ , for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ .(a) Find $\frac{dy}{dx}$ as a function of t.(b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .(c) (Calculator) The curve C intersects the y-axis twice. Approximate the length of the curve between the y-intercepts.6A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describing the curve?(A) Increasing & concave up(B) increasing & concave down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |                                                                                                                                                                    |  |  |  |
| 5       Consider the curve C given by the parametric equations $x=2-3\cos t$ and $y=3+2\sin t$ , for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ .         (a) Find $\frac{dy}{dx}$ as a function of t.         (b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .         (c) (Calculator) The curve C intersects the y-axis twice. Approximate the length of the curve between y-intercepts.         6         A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describ curve?         (A) Increasing & concave up       (B) increasing & concave down       (C) decreasing and concave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 | A curve <i>C</i> is defined by the parametric equations $x = t^3$ and $y = t^2 - 5t + 2$ . Write an equation of the line that is                                   |  |  |  |
| Consider the curve <i>C</i> given by the parametric equations $x=2-3\cos t$ and $y=3+2\sin t$ , for $-\frac{1}{2} \le t \le \frac{1}{2}$ .<br>(a) Find $\frac{dy}{dx}$ as a function of <i>t</i> .<br>(b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .<br>(c) (Calculator) The curve <i>C</i> intersects the <i>y</i> -axis twice. Approximate the length of the curve between <i>y</i> -intercepts.<br>6 A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describ curve?<br>(A) Increasing & concave up (B) increasing & concave down (C) decreasing and concar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | tangent to the graph of C at the point $(8, -4)$ .                                                                                                                 |  |  |  |
| Consider the curve <i>C</i> given by the parametric equations $x=2-3\cos t$ and $y=3+2\sin t$ , for $-\frac{1}{2} \le t \le \frac{1}{2}$ .<br>(a) Find $\frac{dy}{dx}$ as a function of <i>t</i> .<br>(b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .<br>(c) (Calculator) The curve <i>C</i> intersects the <i>y</i> -axis twice. Approximate the length of the curve between <i>y</i> -intercepts.<br>6 A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describ curve?<br>(A) Increasing & concave up (B) increasing & concave down (C) decreasing and concar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                                    |  |  |  |
| (b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .<br>(c) (Calculator) The curve <i>C</i> intersects the <i>y</i> -axis twice. Approximate the length of the curve between <i>y</i> -intercepts.<br>A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best described curve?<br>(A) Increasing & concave up (B) increasing & concave down (C) decreasing and concave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 | Consider the curve C given by the parametric equations $x=2-3\cos t$ and $y=3+2\sin t$ , for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ .                            |  |  |  |
| (b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .<br>(c) (Calculator) The curve <i>C</i> intersects the <i>y</i> -axis twice. Approximate the length of the curve between <i>y</i> -intercepts.<br>A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best described curve?<br>(A) Increasing & concave up (B) increasing & concave down (C) decreasing and concave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | (a) Find $\frac{dy}{dt}$ as a function of t.                                                                                                                       |  |  |  |
| 6A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describ<br>curve?<br>(A) Increasing & concave up(B) increasing & concave down(C) decreasing and concave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | π                                                                                                                                                                  |  |  |  |
| $y$ -intercepts.6A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describ<br>curve?<br>(A) Increasing & concave up(B) increasing & concave down(C) decreasing and concave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | (b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$ .                                                                                  |  |  |  |
| A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$ . Which of the following best describ curve?<br>(A) Increasing & concave up (B) increasing & concave down (C) decreasing and concave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | <ul><li>(c) (Calculator) The curve <i>C</i> intersects the <i>y</i>-axis twice. Approximate the length of the curve between the two <i>y</i>-intercepts.</li></ul> |  |  |  |
| curve?<br>(A) Increasing & concave up (B) increasing & concave down (C) decreasing and concave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 | A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \pi$ . Which of the following best describes the                                       |  |  |  |
| (A) Increasing & concave up (B) increasing & concave down (C) decreasing and concave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | A parametric curve is defined by $x - \sin t$ and $y - \csc t$ for $0 < t < -$ . which of the following best describes the 2                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                                                                                                                                                    |  |  |  |
| (D) Decreasing & concave down (E) decreasing with a point of inflection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | (A) Increasing & concave up (B) increasing & concave down (C) decreasing and concave up                                                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | (D) Decreasing & concave down (E) decreasing with a point of inflection                                                                                            |  |  |  |

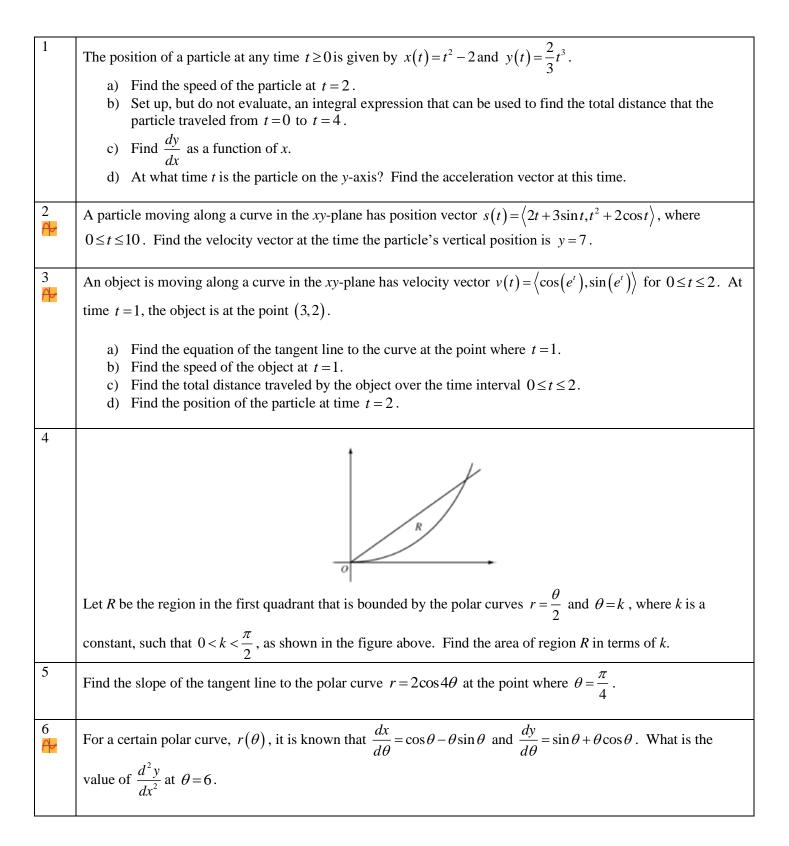
| 1  | Determine the rectangular equation for the parametric curve defined by $x = \ln t$ and $y = t$ for $t > 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2  | A particle moves along the curve $xy = 10$ . If $x = 2$ and $\frac{dy}{dt} = 3$ , what is the value of $\frac{dx}{dt}$ ?                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 3  | Point $P(x, y)$ moves in the <i>xy</i> -plane in such a way that $\frac{dx}{dt} = \frac{1}{t+1}$ and $\frac{dy}{dt} = 2t$ for $t \ge 0$ .<br>(a) Find the coordinates of <i>P</i> in terms of <i>t</i> when $t = 1$ , $x = \ln 2$ , and $y = 0$ .<br>(b) Write an equation expression <i>y</i> in terms of <i>x</i> .<br>(c) Find the average rate of change of <i>y</i> with respect to <i>x</i> as <i>t</i> varies from 0 to 4.<br>(d) Find the instantaneous rate of change of <i>y</i> with respect to <i>x</i> when $t = 1$ . |  |
| 4  | Given the parametric equations, $x = 3t + 1$ , $y = 9 - 4t$ , find the length of the path over the interval $0 \le t \le 2$ .                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 5  | Given the parametric equations, $x = 2t^2$ , $y = 3t^2 - 1$ , find the length of the path over the interval $0 \le t \le 4$ .                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 6  | Given the parametric equations, $x = \sin 3t$ , $y = \cos 3t$ , find the length of the path over the interval $0 \le t \le \pi$ .                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 7  | What is the maximum height of a particle whose path has the parametric equations $x = t^9$ , $y = 4 - t^2$ ?                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 8  | Find the length of the curve that has parametric equations $x = \cos^3 t$ , $y = \sin^3 t$ on the interval $0 \le t \le 2\pi$ .                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 9  | Identify the lowest point on the curve that has parametric equations $x = t+1$ , $y = t^2 + t$ on the interval $-2 \le t \le 2$                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 10 | Identify the rightmost point on the curve that has parametric equations $x = 2\sin t$ , $y = \cos t$ on the interval $0 \le t \le \pi$ .                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 11 | Identify the leftmost point on the curve that has parametric equations $x = t^2 + 2t$ , $y = t^2 - 2t + 3$ on the interval $-2 \le t \le 3$ .                                                                                                                                                                                                                                                                                                                                                                                      |  |

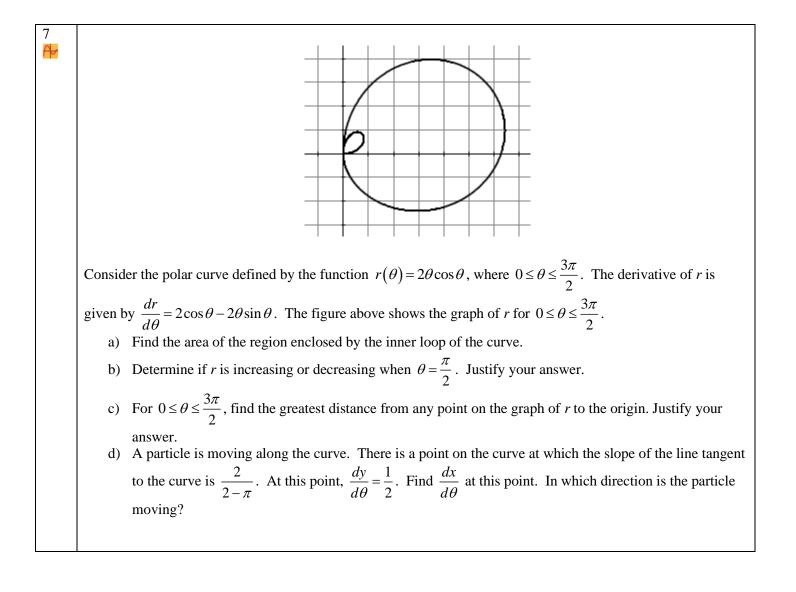
No calculator, unless explicitly stated.

| 1 | If a particle moves in the <i>xy</i> -plane so that at any time $t > 0$ , its position vector is $s(t) = \langle \ln(t^2 + 5t), 3t^2 \rangle$ , find its velocity vector at time $t = 2$ .                                                                                                                                                            |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | A particle moves in the <i>xy</i> -plane so that at any time <i>t</i> , its coordinates are given by $x(t) = t^5 - 1$ , $y(t) = 3t^4 - 2t^3$ .<br>Find its acceleration vector at $t = 1$                                                                                                                                                             |
| 3 | If a particle moves in the <i>xy</i> -plane so that at time <i>t</i> , its position vector is $s(t) = \left\langle \sin\left(3t - \frac{\pi}{2}\right), 3t^2 \right\rangle$ , find the velocity vector at time $t = \frac{\pi}{2}$ .                                                                                                                  |
| 4 | A particle moves on the curve $y = \ln x$ so that its <i>x</i> -coordinate has velocity $x'(t) = t + 1$ for $t \ge 0$ . At time $t = 0$ , the particle is at point $(1,0)$ . Find the position of the particle at time $t = 1$ .                                                                                                                      |
| 5 | A particle moves in the <i>xy</i> -plane in such a way that its velocity vector is $v(t) = \langle 1+t, t^3 \rangle$ . If the position vector at $t = 0$ is $\langle 5, 0 \rangle$ , find the position of the particle at $t = 2$ .                                                                                                                   |
| 6 | The position of a particle in the <i>xy</i> -plane is given by the parametric equations $x(t) = t^3 - \frac{3}{2}t^2 - 18t + 5$ and $y(t) = t^3 - 6t^2 + 9t + 4$ . For what value(s) of <i>t</i> is the particle at rest?                                                                                                                             |
| 7 | A particle moves in the <i>xy</i> -plane so that the position of the particle is given by $x(t) = 5t + 3\sin t$ and $y(t) = (8-t)(1-\cos t)$ . Find the speed of the particle at the time when the particle's horizontal position is $x = 25$                                                                                                         |
| 8 | The position of a particle at any time $t \ge 0$ is given by $x(t) = t^2 - 3$ and $y(t) = \frac{2}{3}t^3$ .<br>(a) Find the speed of the particle at time $t = 5$ .<br>(b) Find the total distance traveled by the particle from $t = 0$ to $t = 5$ .<br>(c) Find an expression that would represent the slope of the path of particle in terms of x. |
| 9 | A particle moves on the curve $y = 2x$ so that its <i>x</i> -coordinate has velocity $x'(t) = 3t^2 + 1$ for $t \ge 0$ . At time $t = 0$ , the particle is at point (2,4). Find the position of the particle at time $t = 1$ .                                                                                                                         |

| 1       | dy                                                                                                                                                                                                                                                                                    |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | If $x(t) = e^{2t}$ and $y(t) = \sin(3t)$ , find $\frac{dy}{dx}$ in terms of t.                                                                                                                                                                                                        |  |
| 2       | Write an integral expression to represent the length of the path described by the parametric equations $x = \cos^3 t$                                                                                                                                                                 |  |
|         | and $y = \sin^2 t$ for $0 \le t \le \frac{\pi}{2}$ .                                                                                                                                                                                                                                  |  |
| 3       | For what value(s) of t does the curve given by the parametric equations $x = t^3 - t^2 - 1$ and $y = t^4 + 2t^2 - 8t$ have a vertical tangent?                                                                                                                                        |  |
| 4       | Find the equation of the tangent line to the curve given by the parametric equations $x(t) = 3t^2 - 4t + 2$ and                                                                                                                                                                       |  |
|         | $y(t) = t^3 - 4t$ at the point on the curve where $t = 1$ .                                                                                                                                                                                                                           |  |
| 5       | If $x(t) = 6 - 2t$ and $y(t) = t^3 + 3$ are the equations of the path of a particle moving in the <i>xy</i> -plane, in which                                                                                                                                                          |  |
|         | direction is the particle moving as it passes through the point $(4,4)$ ?                                                                                                                                                                                                             |  |
| 6       | A particle moves in the <i>xy</i> -plane so that its position at any time <i>t</i> is given by $x = cos(5t)$ and $y = t^3$ . What is the speed of the particle when $t = 2$ ?                                                                                                         |  |
| 7       | The position of a particle at time $t \ge 0$ is given by the vector-valued equation $s(t) = \left\langle \frac{(t-2)^3}{3} + 4, t^2 - 4t + 4 \right\rangle$ .                                                                                                                         |  |
|         | <ul> <li>a) Find the speed of the particle at t = 1.</li> <li>b) Find the total distance traveled by the particle from t = 0 to t = 1.</li> <li>c) When is the particle at rest? What is its position at that time?</li> </ul>                                                        |  |
| 8       | An object moving along a curve in the <i>xy</i> -plane has position given by $s(t) = \langle x(t), y(t) \rangle$ at time $t \ge 0$ with $\frac{dx}{dt} = 1 + \tan(t^2)$ and $\frac{dy}{dt} = 3e^{\sqrt{t}}$ . Find the acceleration vector and the speed of the object when $t = 5$ . |  |
| 9       | A particle moves in the xy-plane so that the position of the particle is given by $x(t) = t + \cot t$ and                                                                                                                                                                             |  |
| f       | $y(t) = 3t + 2\sin t$ for $0 \le t \le \pi$ . Find the velocity vector when the particle's vertical position is $y = 5$ .                                                                                                                                                             |  |
| 10      | An object moving along a curve in the <i>xy</i> -plane has velocity vector $v(t) = \langle 2\sin(t^3), \cos(t^2) \rangle$ at time <i>t</i> for                                                                                                                                        |  |
|         | $0 \le t \le 4$ . At time $t = 1$ , the object is at position (3,4).                                                                                                                                                                                                                  |  |
|         | a) Write an equation for the line tangent to the curve at $(3,4)$ .                                                                                                                                                                                                                   |  |
|         | <ul> <li>b) Find the speed of the object at time t = 2.</li> <li>c) Find the total distance traveled by the object over the time interval 0≤t≤1.</li> <li>d) Find the position of the particle at time t = 2.</li> </ul>                                                              |  |
| 11<br>🏳 | An object moving along a curve in the <i>xy</i> -plane has velocity $v(t) = \langle \cos(t^2), \sin(t^3) \rangle$ . At time $t = 0$ , the object is at position (4,7). Where is the particle at time $t = 2$ ?                                                                        |  |
| 12      | The path of a particle moving in the plane is defined parametrically as a function of time t by $x = \sin 2t$ and $y = \cos 5t$ . What is the speed of the particle at time $t = 2$ ?                                                                                                 |  |
| 13      | Find the total distance traveled by a particle from $t = 0$ to $t = 3$ whose position is given by the vector $s(t) = \left\langle t^2 + 1, \frac{4}{3}t^3 \right\rangle$ .                                                                                                            |  |

| 1 | Convert the following equations to polar form:                                                                 |  |
|---|----------------------------------------------------------------------------------------------------------------|--|
|   | a) $x^2 + y^2 = 16$                                                                                            |  |
|   | b) $4x + 3y - 1 = 0$                                                                                           |  |
|   | c) $y = 7$                                                                                                     |  |
| 2 | Convert the following equations to rectangular form:                                                           |  |
|   | a) $r = 3 \sec \theta$                                                                                         |  |
|   | b) $4r\cos\theta = r^2$                                                                                        |  |
|   | c) $\theta = \frac{5\pi}{6}$                                                                                   |  |
| 3 | For each of the polar functions, find $\frac{dy}{dx}$ for the given value of $\theta$ .                        |  |
|   | a) $r=1-\sin\theta$ , $\theta=0$                                                                               |  |
|   | b) $r = \cos \theta$ , $\theta = \frac{\pi}{3}$                                                                |  |
|   | c) $r = 3(1 - \cos\theta), \ \theta = \frac{\pi}{2}$                                                           |  |
| 4 | Find the point(s) where the polar curve given $r = 1 + \sin \theta$ has horizontal and vertical tangent lines. |  |


# **Polar Equations and Motion**


| 1 | For the curve $r = 3 + 3\sin(2\theta)$ , find the value of $\frac{dx}{d\theta}$ at $\theta = \frac{\pi}{3}$ .                                                                                                                                                                                                               |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Find $\frac{dy}{dx}$ for $r(\theta) = 3\cos\theta$ when $\theta = \frac{\pi}{4}$ .                                                                                                                                                                                                                                          |
| 3 | Find the equation of the tangent line to the curve $r = -1 + \sin \theta$ when $\theta = \pi$ .                                                                                                                                                                                                                             |
| 4 | A particle is moving along the curve $r = 4 - \sin(3\theta)$ so that $\frac{d\theta}{dt} = 3$ for all times $t \ge 0$ . Find the value of $\frac{dr}{dt}$ at $\theta = \frac{\pi}{6}$ .                                                                                                                                     |
| 5 | <ul> <li>A particle moves along the polar curve r=4-2sinθ so that at time t seconds, θ=t<sup>2</sup>.</li> <li>a) Find the position vector in terms of t. Find the velocity vector at time t =1.5</li> <li>b) Find the time t in the interval 1≤t≤2 for which the x-coordinate of the particle's position is -1.</li> </ul> |
| 6 | For a certain polar curve, $r(\theta)$ , it is known that $\frac{dx}{d\theta} = \cos\theta - \theta\sin\theta$ and $\frac{dy}{d\theta} = \sin\theta + \theta\cos\theta$ . What is the value of $\frac{d^2y}{dx^2}$ at $\theta = \frac{3\pi}{2}$ .                                                                           |

| 1      | Find the area bounded by $r = 5\sin\theta$ .                                                |  |
|--------|---------------------------------------------------------------------------------------------|--|
| 2      | Find the area of the shaded region of the polar curve for $r = 1 - \cos 2\theta$            |  |
| 3      | Find the area of one petal of the rose curve $r = 3\cos(3\theta)$ .                         |  |
| 4<br>A | Find the area of the region in the plane enclosed by the cardioid $r = 4 + 4\sin(\theta)$ . |  |
| 5      | Find the area inside the smaller loop of the limacon $r = 1 + 2\cos\theta$ .                |  |
| 6      | Find the area of one petal of the rose curve defined by $r = 4\sin(6\theta)$ .              |  |

A calculator is required for all problems.

| 1) Find the area of the shaded region of the polar curve $r = 4 - 6\sin\theta$ .                                                           | 2) Find the area of the shaded region of the polar curve $r = \cos 2\theta$ .                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| <ul> <li>3) Find the area of the shaded region bounded by the polar curves r = 3 and r = 3cos 3θ indicated in the figure below.</li> </ul> | 4) Find the area of the shaded region for the polar curve $r=1-\cos\theta$ .                                   |
| <ul> <li>5) Find the area of the region bound by the two polar curves r=1 and r=1-cosθ as shown in the graph below.</li> </ul>             | 6) Find the area of the common region to the polar graphs $r = 2$ and $r = 2 - 2\sin\theta$ .                  |
| 7) Find the area of common interior bounded by the graphs of polar curves $r = 3\cos\theta$ and $r = 2 - \cos\theta$ .                     | 8) Find the area of the region that is inside the polar graph of $r=1+2\cos\theta$ but outside the inner loop. |



